Downregulation of the BK channel beta1 subunit in genetic hypertension.

نویسندگان

  • Gregory C Amberg
  • L Fernando Santana
چکیده

The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca2+ release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca2+ sparks) activate large-conductance, Ca2+-sensitive K+ (BK) channels. Ca2+ sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth muscle and thereby opposes vasoconstriction. In this study, we examined Ca2+ sparks and BK channel function in Wistar-Kyoto (WKY) rats with borderline hypertension and in spontaneously hypertensive rats (SHR), a widely used genetic model of severe hypertension. We found that the amplitude of spontaneous BK currents in WKY and SHR cells were smaller than in normotensive cells even though Ca2+ sparks were of similar magnitude. BK channels in WKY and SHR cells were less sensitive to physiological changes in intracellular Ca2+ than normotensive cells. Our data indicate that decreased expression of the BK channel beta1 subunit underlies the lower Ca2+ sensitivity of BK channels in SHR and WKY myocytes. We conclude that the lower expression of the beta1 subunit during genetic borderline and severe hypertension reduced BK channel activity by decreasing the sensitivity of these channels to physiological changes in Ca2+. These results support the view that changes in the molecular composition of BK channels may be a fundamental event contributing to the development of vascular dysfunction during hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulation of the BK Channel 1 Subunit in Genetic Hypertension

The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca sparks) activate large-conductance, Ca -sensitive K (BK) channels. Ca sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth muscle and t...

متن کامل

Aerobic exercise of low to moderate intensity corrects unequal changes in BK(Ca) subunit expression in the mesenteric arteries of spontaneously hypertensive rats.

Accumulating evidence indicates that hypertension is associated with "ion channel remodeling" of vascular smooth muscle cells (VSMCs). The objective of this study was to determine the effects of exercise intensity/volume on hypertension-associated changes in large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in mesenteric arteries (MAs) from spontaneously hypertensive rats (SHR). Male SH...

متن کامل

Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle.

1. The large-conductance calcium-activated potassium (BK) channel plays an important role in controlling membrane potential and contractility of urinary bladder smooth muscle (UBSM). These channels are composed of a pore-forming alpha-subunit and an accessory, smooth muscle-specific, beta1-subunit. 2. Our aim was to determine the functional role of the beta1-subunit of the BK channel in control...

متن کامل

BK channel beta1-subunit regulation of calcium handling and constriction in tracheal smooth muscle.

The large-conductance, Ca2+-activated K+ (BK) channels are regulators of voltage-dependent Ca2+ entry in many cell types. The BK channel accessory beta1-subunit promotes channel activation in smooth muscle and is required for proper tone in the vasculature and bladder. However, although BK channels have also been implicated in airway smooth muscle function, their regulation by the beta1-subunit...

متن کامل

Deglycosylation of the beta1-subunit of the BK channel changes its biophysical properties.

Large-conductance Ca(2+)-activated potassium (BK) channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. The alpha-subunits are widely expressed in many cell types, whereas the beta-subunits are more tissue specific and influence diverse aspects of channel function. In the current study, we identified the presence of the smooth muscle-specific beta1-subunit in murine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 93 10  شماره 

صفحات  -

تاریخ انتشار 2003